# The microbiome of a XIV century medieval codex: are microbes part of cultural heritage objects?

# Cecilia G. Flocco & Jörg Overmann

**Department of Microbial Ecology and Diversity Research** Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH

We present a comprehensive study of the microbiome of a medieval codex of the XIV century held at the Leipzig University Library (UBL), Germany. The overarching research hypothesis proposes microbes as integral parts of cultural heritage objects and potential biographical elements, challenging the current conservation practice narrative which labels microbes as detrimental to the objects. Initial research outcomes and next steps are presented.

#### **The Project: MIKROBIB Contamination & Legibility of the World: Articulating Microbes in Collections** An Interdisciplinary Project across Life Sciences and Humanities

**The Object Under Study : UBL MS 12** 

# The Challenge: Sampling Heritage Objects

DSMZ





- Ms 12, XIV century Bible, parchment, wood.
- Chained book (public use), not digitized or studied
- Monasteries Leipzig area (Altzelle or Pegau)
- Custody at UB Leipzig after Reformation

#### -touching the (almost) untouchable-

- sampling on site, easy implementation
- non destructive, minimally invasive
- Limited, restricted access
- unicates
- no re-sampling
- presence of inhibitors, interferences
- degraded biomolecules





### **Cultivation Independent Approach**

Ancient books' DNA: low yield, mixed sources and quality

 Source Endogenous animal sources (parchment) plant sources (paper, wood) Exogenous microbial human (+ assoc. microbiome) insect Compartment



# **Experimental Roadmap The Microbiome of Medieval Manuscripts**



## **Culturomics Approach**

Large simultaneous cultivation set up

- Combination of cultivation media composition, atmosphere, cultivation devices, book areas and time
- Expanded to extreme conditions resembling parchment







- intracellular (iDNA) extracelular (eDNA)
- Cells status (microbial) viable (incl. endopsores) dead
- Age contemporaneous ancient DNA (aDNA)





## WetLab Workflow Optimization

#### **Microbial community analysis: 16S rRNA gene profiling**



## Whole Genome Sequencing

#### **Isolation and genome analysis of selected bacteria from books**

• Selection: ~30 representative isolates/novel species/medical-historical interest: Genera: Bacillus, Virgibacillus, Staphylococcus, Paenibacillus, Halobacillus, Oceanobacillus, Sporosarcina, Streptomyces, Cutibacterium, Dermacoccus

#### • Biomass production:

- Standard Method: Shake-flasks (~50% isolates) • Adapt or create cultivation methods for slow growers, fastidious, biofilm-forming microorganisms, etc.
- Purity check (microscopy, 16S-sequencing)



**Bioinformatics: phylogenomic and in depth genome analysis** 





# Ms12 Isolates classification

**16s rRNA gene-based – representative subset** 



#### % Distribution: Phylum level







**MS12** QIAamp DNeasy **DNA Micro PowerBiofilm** 

4. B2a

2. M1a

PreElution

Habitat Adaptation and Novel Taxa

#### **Comparison of 16S rRNA gene profiles**



- Similar profile: extraction methods or previous steps not affecting
- Relatively low number of taxa
- Dominance of *Saccharopolyspora*, both HTS methods (16S rRNA copies: 5-16, most 12)



Virgibacillus sp. CF12\_S2.044 (Virgibacillus natechei 97.1%) Isolation: pH 9 - NaCl 20 % - 30 days



Bacillus sp. CF12\_S3.021 (Bacillus humi 96.8%) Isolation: pH 7- NaCl 0.5 % - 3-5 days

#### Polyphasic approach

Macro: colony 2-3 mm, cream, round, rai **Macro**: colony 2-3 mm, cream, round, raised, margin entire margin entire Microscopy: G+ rods (single+chains), end.ST/ Microscopy: G+ rods (single+chains), end. ST Growth: 32°C (25-40) pH 7.5 (7-8.5) NaCl **Growth**: 25°C (22-32) pH 8.6 (7-9) NaCl% 7.5

(1.5-2.5), aerobe, halotolerant (5-15), aerobe, alkaliphilic halophile Chemotax: PG: mesoDAPdir; MK:MK7 >> MK8 Chemotax. PG: A4B L-Orn (-D-Asp), MK: N **Genome**: 3.9 Mbp -1chr - 39.1 GC%, 3832 pcg **Genome**: 4.4 Mbp, 1chr, 37.2 GC%, 4326 pcg

| sed,        | <ul> <li>Microbial community adapted to parchment habitat</li> <li>Gram+, endospore/biofilm forming bacteria</li> <li>Dry, low a<sub>w</sub> environments</li> <li>Survival on surfaces</li> <li>Skin microbiome (animal, human) associated</li> </ul> | New case stu         |                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|
|             |                                                                                                                                                                                                                                                        | <u>Prc</u><br>•<br>• | ovenance re<br>Benediktin<br>Abbatiat Al<br>Illustration |
|             | Cultivation approach <ul> <li>predominantly Bacillaceae</li> </ul>                                                                                                                                                                                     |                      |                                                          |
|             | <ul> <li>Cultivation independent approach</li> <li>predominantly Actinobacteria<br/>(Pseudonocardiaceaee/ Saccharopolyspora).</li> </ul>                                                                                                               |                      |                                                          |
| /T<br> % 2  | <ul> <li>Novel taxa</li> <li>potential biographical and biotechnol. value.</li> </ul>                                                                                                                                                                  |                      | Ms12<br>2 volum                                          |
| <b>ИК</b> 7 | <ul> <li>Phylogenomics: (in progress)</li> <li>molecular dating</li> </ul>                                                                                                                                                                             | •                    | Comparat<br>Expand to                                    |

evolutionary relationships

#### udy: Ms 11 (bound to Ms12)

<u>evised, UBL (Altzelle / Buch?):</u> ne Closter Pegau lbert von Langendorf (1311-48) style: hints to early period



**Ms11** me-Bible, early XIV. Cent.

- tive Biomolecular Analyses
- other Mss (materiality, use)
- Work in progress...

SPONSORED BY THE











